На острове живут 100 рыцарей и 100 лжецов, у каждого из них есть только один друг. Рыцари всегда говорят правду, а лжецы всегда лгут.
Однажды утром каждый житель произнес фразу «Все мои друзья — рыцари», либо «Все мои друзья — лжецы», причем каждую из фраз произнесло ровно 100 человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой — лжец.
Показать ответ
50 (Пятьдесят)
Заметим, что в паре рыцарь-лжец каждый должен сказать, что другой лжец: рыцарь скажет правду, а лжец соврет, в паре рыцарь-рыцарь оба скажут правду, а в паре лжец-лжец оба скажут неправду. Значит, фраза «Все мои друзья — лжецы» употребляется только в парах рыцарь-лжец.
Минимальное количество пар рыцарь-лжец, когда фразу сказали 100 человек, это 50. Если пар будет меньше, то и фраз тоже будет меньше.